

Comparison of Many-Objective Optimisation and Multi-Criteria Analysis for Improved Water-Energy Efficient Design of Water Treatment Works for India

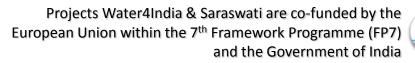
Andrew P Duncan, Seyed MK Sadr, Fayyaz Ali Memon,
Dragan A Savić

- ☐ Aims
- ☐ Study design
- ☐ Place and duration of the study
- ☐ Methodology
- ☐ Results
- ☐ Conclusions

wat≝f

Aims

- ☐ To provide a user-friendly decision support tool
 - For selection of potable water treatment technology solutions
 - For selection of wastewater treatment technology solutions
- Named: WETSUIT (WatEr Treatment decision SUpport software Tool)
- ☐ Challenges:
 - Water and energy efficient solutions in presence of many other conflicting criteria
 - Suitable for two <u>scales</u>: Centralised (treatment trains) and Decentralised (packages)
 - Existing <u>practice</u> and <u>constraints</u> need to be understood

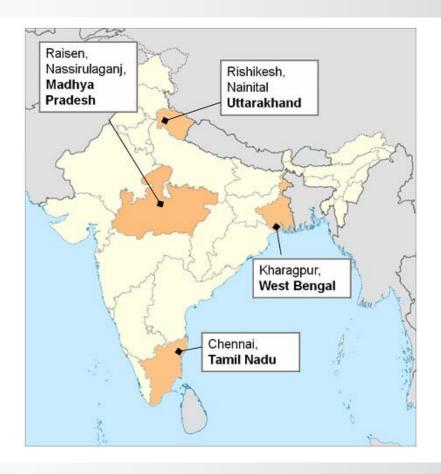

☐ What will the "WETSUIT" DSS tool provide?:

- Built on considerable previous work on DSS tools for water treatment
- Will improve decision making process for wastewater treatment:
 - Identify potential treatment solutions for user-defined end-uses:
 - e.g. cooling; irrigation (for different crops); groundwater recharge
 - Present the user with a number of near-optimal <u>solutions</u> allowing them to negotiate the final <u>selection</u>
- Similarly improve decision making process for potable water treatment taking into account nature of the raw source water / population size etc.

Study design

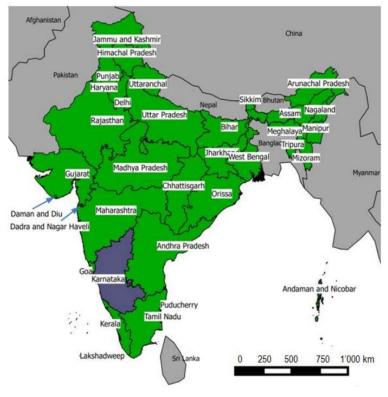
- ☐ Stakeholder workshops
 - Requirements capture for the DSS tool (held May 2015)
- Design, Coding and Implementation of DSS tool
- Comparison of two approaches to optimisation
 - Multi-criteria analysis (MCA)
 - Many-objective optimisation (MOO)
 - Sensitivity analysis to study and compare the performance of MOO and MCA
- Pilot case studies in India

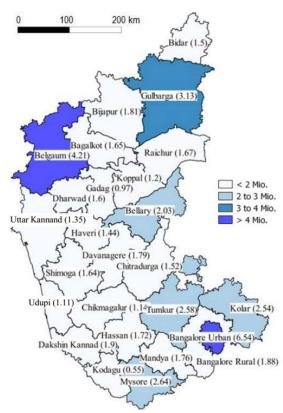




Place and duration of the study

- □ Water-challenged sites for pilot case studies in India (SARASWATI project)
 - Project 2013-16
 - Case studies 2015-16





Place and duration of the study

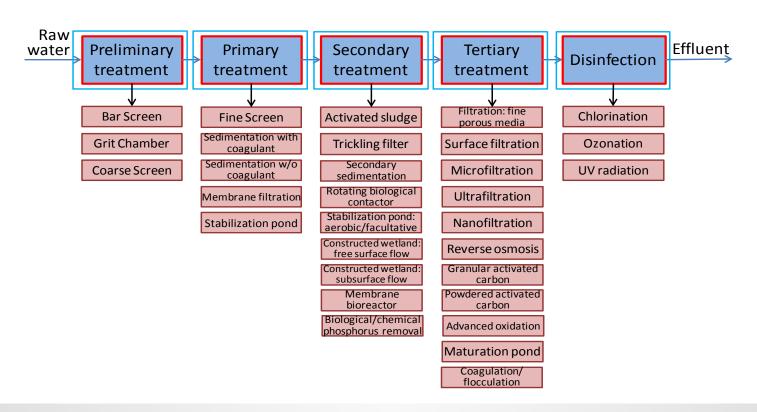
- □ Karnataka
- Water4India
- **2**013-16

☐ Key DS tool components:

Pre-treatment unit Discharge to Aeration unit Sewage (incl. primary clarifier) clarifier water body treatment

- Rule-based **system model** automatically:
 - **selecting**, mixing and matching **technologies** in the treatment train
 - preliminary \rightarrow primary \rightarrow secondary \rightarrow tertiary \rightarrow disinfection
 - using knowledge contained within the DS tool about each process
 - keeping in view **influent characteristics** (flow, quality, pollutants etc)
 - taking into account intended **end use** of the effluent
 - allowing for user-defined constraints/preferences

9

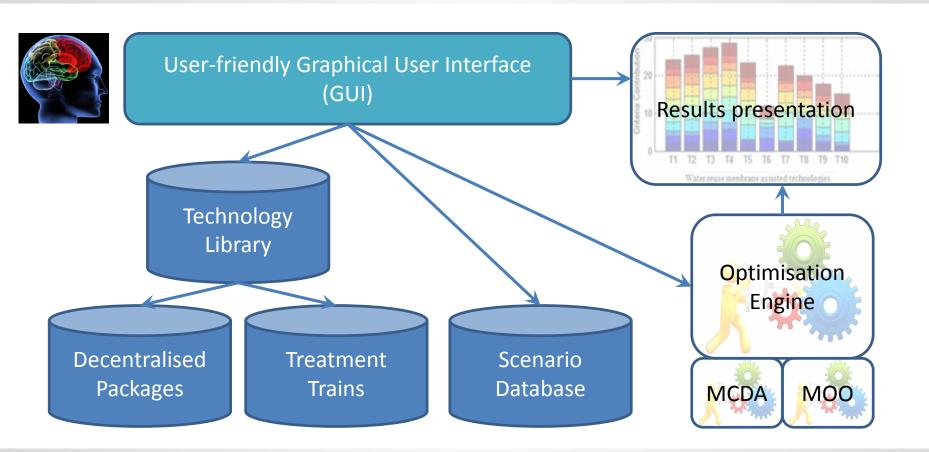


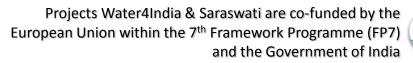
Methodology – technology choices

☐ Unit process choices at stages in wastewater treatment train:

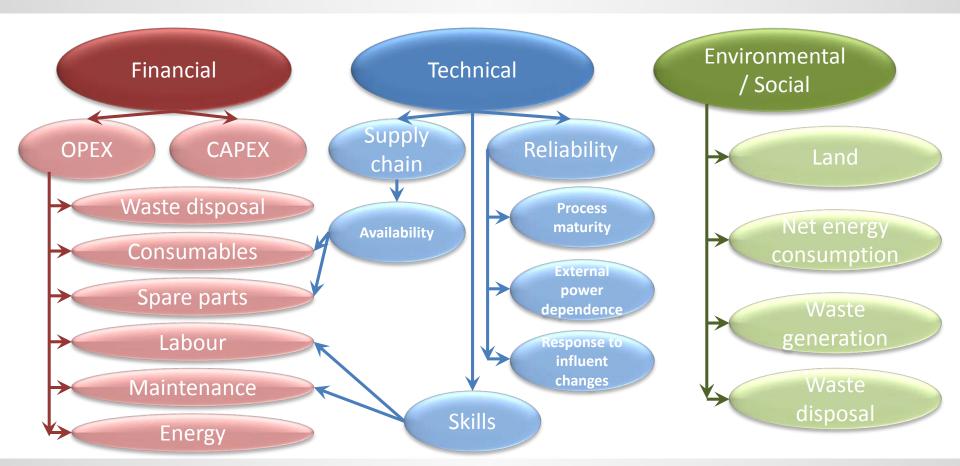
Methodology - Constraints

- ☐ Constraints for technology selection DS tool:
- For each unit process there exists a set of valid pre-treatment process options
- ☐ Same for post-treatment options



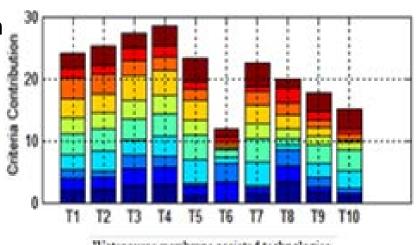

Methodology – WETSUIT Architecture

12



Methodology - Criteria

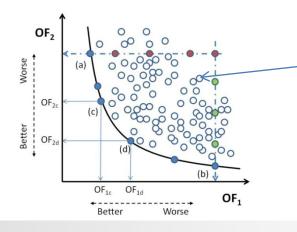
13

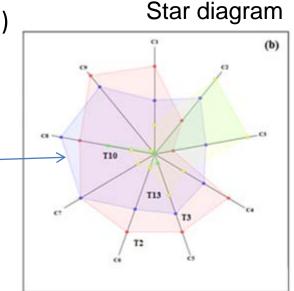


☐ Multi-Criteria Analysis (MCA)

- Pre-weighting of criteria against each other
 - based on stakeholder preferences
- Single combined-objective algorithm
- Criteria are additive

Water reuse membrane assisted technologies

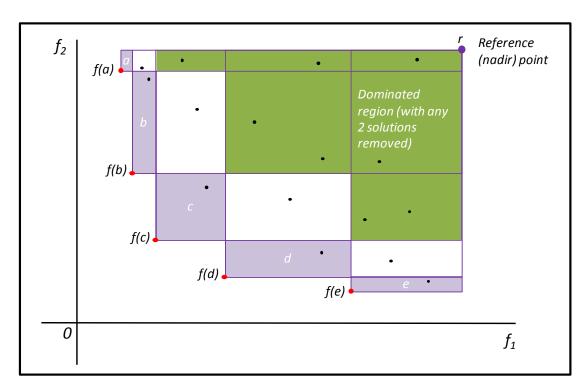



■ Many-Objective Optimisation (MOO)

- Treat each criterion as equally important
- Many-objective algorithm (many dimensions)

Trade-off between criteria (indicators)

Technology



☐ Many-Objective Optimisation — HypE algorithm (2011)

2D example of solution fitness measured by hypervolume reduction method

☐ Messages from Stakeholder Workshops

Potential end users

 Housing colonies; Drainage boards; Engineers (e.g. from watchdogs; environmental regulators); Municipalities / Urban Local Bodies; Panchayats; Apartment complex managers; Construction industry (civil engineers / architects); O&M companies; NGO's; Consultants; Academic institutions.

Proposals from stakeholders for improving uptake of the DSS tool

- The software needs to be freely downloadable
- accessible in the long term (after the end of the project)
- A programme of capacity building, awareness and user training as well as publicity and promotion is required.

☐ Messages from Stakeholder Workshops

- Required / desired DSS software features
 - A clear-cut ranking of solutions is preferred in order to aid the final decision
 - Social acceptability is an important group of criteria to include
 - Should be flexible and adaptable to new technologies
 - Needs to comply with water directives, standards and guidelines
 - Users must be able to define local rates, technology preferences, budget etc.
 - Should provide risk, uncertainty and sensitivity analyses
 - Needs to operate for a range of scales of water treatment solution (decentralised / centralised)
 - A 2-stage process should be adopted: 1) Constraints handling 2) Optimisation
 - An alarm for inconsistent data should be provided.

☐ Summary of WETSUIT Decision Support Tool

- Allows users to select / mix-and-match technologies for wastewater treatment solutions
- Contains information on decentralised packages and centralised unitprocesses in technology library
- Employs a set of financial + technical + environmental + social criteria (user can select) to evaluate performance of the available options
- Optimiser rates feasible solutions and rejects non-feasible ones
- DS tool presents the list of nearest-optimal technology options with performances to user
- User selects which of these require full consideration for final wastewater treatment plant solution

Questions?

UNEXE Contact:

Fayyaz A. Memon: <u>f.a.memon@exeter.ac.uk</u>

Andrew Duncan: a.p.duncan@exeter.ac.uk

